Some Remarks on a Collocation Method for First Kind Integral Equations
نویسندگان
چکیده
In [4] the authors proposed a collocation algorithm for approximating the minimal norm least-squares solution of first kind integral equations with continuous reproducing kernel. The convergence of the approximate solutions sequence is proved under the assumption that all the sets of collocation functions are linearly independent. In this paper we replace the above assumption by a weaker one and prove that the corresponding sequence of approximations still converges to the minimal norm solution of the initial equation.
منابع مشابه
Application of Chebyshev Polynomials for Solving Abel's Integral Equations of the First and Second Kind
In this paper, a numerical implementation of an expansion method is developed for solving Abel's integral equations of the first and second kind. The solution of such equations may demonstrate a singular behaviour in the neighbourhood of the initial point of the interval ofintegration. The suggested method is based on the use of Taylor series expansion to overcome the singularity which le...
متن کاملEvaluating the solution for second kind nonlinear Volterra Fredholm integral equations using hybrid method
In this work, we present a computational method for solving second kindnonlinear Fredholm Volterra integral equations which is based on the use ofHaar wavelets. These functions together with the collocation method are thenutilized to reduce the Fredholm Volterra integral equations to the solution ofalgebraic equations. Finally, we also give some numerical examples that showsvalidity and applica...
متن کاملEvaluating the solution for second kind nonlinear Volterra Fredholm integral equations using hybrid method
In this work, we present a computational method for solving second kindnonlinear Fredholm Volterra integral equations which is based on the use ofHaar wavelets. These functions together with the collocation method are thenutilized to reduce the Fredholm Volterra integral equations to the solution ofalgebraic equations. Finally, we also give some numerical examples that showsvalidity and applica...
متن کاملB-spline Method for Solving Fredholm Integral Equations of the First Kind
In this paper, we use the collocation method for to find an approximate solution of the problem by cubic B-spline basis. The proposed method as a basic function led matrix systems, including band matrices and smoothness and capability to handle low calculative costly. The absolute errors in the solution are compared to existing methods to verify the accuracy and convergent nature of propo...
متن کاملLocal Annihilation Method and Some Stiff Problems
In this article, a new scheme inspired from collocation method is presented for numerical solution of stiff initial-value problems and Fredholm integral equations of the first kind based on the derivatives of residual function. Then, the error analysis of this method is investigated by presenting an error bound. Numerical comparisons indicate that the presented method yields accur...
متن کامل